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Detection of cloud-affected AIRS channels using an adjacent-pixel approach
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SUMMARY

High-spectral-resolution infrared sounders such as the Atmospheric InfraRed Sounder (AIRS), flying on
the National Aeronautics and Space Administration Earth Observing System (EOS) Aqua satellite, provide
information about vertical temperature and humidity structure that is potentially useful for data assimilation and
numerical weather prediction. Tropospheric channels from infrared sounders are frequently affected by cloud.
The methods currently used operationally to account for cloud effects are screening to eliminate cloud-
contaminated data and cloud-clearing. For either approach, it is important to determine which channels peak
sufficiently above the cloud so that they are not contaminated. Depending on the sounding, different combinations
of channels are cloud-contaminated, thus making cloud detection difficult.

This paper proposes a new method of identifying clear or unaffected channels using adjacent pixels.
Unlike other proposed or implemented methods, this approach does not rely heavily on having accurate back-
ground information about the atmospheric state or estimates of its error. The method also does not make any
assumptions about cloud spectral properties. Instead, it assumes that clouds will produce adjacent-pixel variability.
The approach requires an estimate of clear-scene adjacent-pixel homogeneity that can be obtained with real data.

We apply the methodology to simulated AIRS data using Monte Carlo experiments. We then apply the
algorithm to real AIRS data and use brightness temperature departure statistics as an independent check for
residual cloud contamination. We also make qualitative comparisons with cloud properties derived from the EOS
Aqua Moderate-Resolution Imaging Spectroradiometer instrument.
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1. INTRODUCTION

The high spectral resolution of advanced infrared sounders, such as the
Atmospheric InfraRed Sounding (AIRS) (Aumann and Pagano 1994), should result in
significantly improved temperature- and moisture-sounding capabilities as compared
with the current operational High-resolution InfraRed Sounder (HIRS) (e.g. Joiner
and da Silva 1998; Prunet et al. 1998). Therefore, AIRS has the potential to improve
numerical weather prediction (NWP) forecasts. Several NWP centres now receiving
AIRS data in near real time are starting to monitor the data and conduct impact studies.
AIRS is flying with the Advanced Microwave Sounding Unit-A (AMSU-A) and the
Humidity Sounder for Brazil on the National Aeronautics and Space Administration
(NASA) Earth Observing System (EOS) Aqua platform.

Infrared data are frequently affected by cloud. Therefore, observations must be
processed for operational data assimilation, either by screening to remove cloud-
contaminated pixels as in e.g. Derber and Wu (1998), or by cloud-clearing to remove
the effect of cloud as in e.g. Joiner and Rokke (2000). Although efforts are underway
to assimilate cloud information from infrared sounders (e.g. Chevallier et al. 2002),
operational NWP centres currently use cloud-screened or cloud-cleared data.

Cloud-clearing uses adjacent pixels to estimate clear-column radiances that would
have been observed in the absence of cloud (Smith 1968; Chahine 1974, 1977).
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Figure 1. Simulated brightness temperature difference spectra at AIRS resolution. Light line: simulated noisy
cloudy observations (black cloud at 800 hPa with 30% cloud fraction) minus background that assumed clear
conditions with background errors (background skin-temperature error of −2.3 K); heavy line: true clear minus

cloudy; diamond: channel provided in the near-real-time dataset.

This process amplifies random measurement noise and should only be applied to cloud-
affected channels. Therefore, it is important both for cloud-clearing and cloud-screening
to determine how many channels of a given sounding are cloud-affected.

There are several methods that have been used to detect cloud-contaminated radi-
ance measurements or to determine the height of a cloud and thus which channels peak
above the cloud. Specifically, the methods that are being developed for application of
AIRS to data assimilation include variational cloud detection (English et al. 1999), cloud
pressure and effective fraction determination assuming black (unity emissivity) cloud
(J. Derber 2002, personal communication), and a digital filtering approach (McNally
and Watts 2003). A CO2 slicing method has been applied to low-spectral-resolution
infrared sounders (e.g. Menzel et al. 1992). All of these approaches make use of a
background or prior estimate of atmospheric temperature, humidity, ozone, and surface
skin temperature to estimate the clear radiance. Some of the methods require an estimate
of the background error. In addition, some of the algorithms may impose assumptions
about cloud spectral properties.

In cases of small to moderate fractions of low cloud, observed brightness temper-
atures can be significantly reduced as compared with a clear scene. At the same time,
it is possible to have relatively small skin-temperature error in the background that can
mimic the effect of the cloud. In such a case, a cloudy scene or cloud-affected channels
may prove difficult to distinguish from clear if only examined from an observed-minus-
background (O − B) point of view.
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Figure 1 shows simulated brightness temperature differences (single cloud level) for
such a case: an 800 hPa black cloud with a 30% fractional amount. The atmospheric sit-
uation was a model-generated midlatitude summer profile. Similar results are obtained
for a 700 hPa cloud with a 23% fraction. Differences of ∼0.5–1.0 K are comparable to
background errors projected into brightness temperature space (as shown in appendix A
for channels in the 15 µm band) and thus may be mistaken as such, especially when only
a subset of channels is available, although the full spectral patterns may be different.
Similar scenarios can occur for lower cloud fractions (e.g. 20%) where a smaller error
in skin temperature (∼1.5 K) mimics the cloud effect.

We have developed an alternative approach that requires a different set of
assumptions. The method assumes that clouds will produce variability in adjacent-pixel
radiances for affected channels. It does not rely heavily on having accurate background
information, and it does not make assumptions about the spectral properties of the cloud.
Spatial coherency has been previously exploited for cloud detection, although not on a
channel-by-channel basis, using infrared (IR) sounders and imagers (e.g. Masiello et al.
2003).

Section 2 describes the algorithm in detail. Results from studies using simulated
AIRS data are discussed in section 3. We apply the methodology to real AIRS data in
section 4 and use O − B statistics as an independent verification. Finally, we provide
qualitative comparisons with collocated data from the NASA EOS-Aqua Moderate-
Resolution Imaging Spectroradiometer (MODIS). Conclusions and suggestions for
further research are given in section 5.

2. METHODOLOGY

The NASA Global Modeling and Assimilation Office (GMAO) is currently receiv-
ing a reduced AIRS radiance dataset in near real time (Goldberg et al. 2003) provided by
the National Oceanic and Atmospheric Administration National Environmental Satellite
Data and Information Service. This dataset contains a 281 channel subset of the 2378
available AIRS channels. There are nine AIRS pixels within an AMSU-A footprint
as depicted in Fig. 2. The combined AIRS/AMSU pixels are known as a ‘golfball’.
The dataset retains half of the available golfballs. The GMAO receives all nine pixels,
whereas other NWP centres currently receive only the centre AIRS pixel within a golf-
ball.

(a) Determining the significance of adjacent-pixel variability for cloud detection
We must first decide how to use the nine golfball pixels. The pixels within each

golfball column have the same satellite zenith angle (SZA). The SZAs vary slightly
between the columns. Changes in SZAs effectively move the channel weighting func-
tions up and down in the atmosphere due to changes in the atmospheric path for a given
altitude. Therefore, if the pixels within a golfball are completely cloud free, brightness
temperature differences between the columns will occur owing to the different SZAs.

For this study we use only one column per golfball in order to ensure consistent
SZAs. We choose the column that contains the pixel with the highest temperature in an
11 µm window channel. This pixel will later be referred to as the ‘first pixel’. The other
columns are discarded as shown in Fig. 2.

Our original implementation attempted to use all nine pixels with an eigenvector
decomposition to reduce the nine pixels to three fields of view (FOVs) such that the
radiance contrast between the FOVs was maximized. We found that, in addition to the
positive attribute of enhancing contrast due to clouds, the decomposition also increased
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Figure 2. Schematic view of the contrast within the nine AIRS pixels contained in the AMSU footprint
(‘golfball’), and the pixels chosen for this study. Darker shadings represents higher brightness temperatures in

the 11 µm window.

contrast due to SZA differences. This effect was greater at the scan edges where the
brightness temperature differences due to SZA variations are at a maximum. Efforts to
account for SZA effects greatly complicated the algorithm. The eigen-decomposition
also amplifies random instrument noise. Although this effect can be properly taken into
account, it is another complication.

The next step is to compute the radiance differences between the first pixel and
the two other pixels in the column for channels with a surface-to-space transmittance
τs between 0.1 and 0.5. The weighting functions of these channels peak near or just
above the surface. The contrast is defined as significant when, for all of these channels,
the adjacent-pixel brightness temperature differences exceed 0.5 K for either pixel
combination. Slightly less than half of the time, significant variability is observed. As we
will see in section 4, relatively good overall coverage is obtained. The contrast test is
designed to be conservative such that the algorithm will tend to err by declaring scenes
with contrast as ‘no contrast’, rather than vice versa which may allow overcast scenes
into the algorithm based on a single noisy observation.

For completeness, we briefly present the tests used to determine whether a pixel is
cloud free if there is no significant contrast. These tests are along the lines of Joiner and
Rokke (2000) and McMillin and Dean (1982). They verify that a single channel (11 µm)
surface skin temperature retrieval agrees with the background to within ±1 K over ocean
and ±3 K over land. In addition, 11 µm- and 3.8 µm-retrieved skin temperatures must
agree to within ±1 K at night and those from 11 µm and 12–13 µm to within ±1 K at
all times.

These tests are passed only about 4% of the time. If the contrast test is not applied
and the clearest golfball pixel is subjected to the other checks, scenes are declared clear
about 10% of the time. If the contrast test is applied to all nine pixels within a golfball
in addition to the other tests, the scene is found to be clear less than 2% of the time. If a
pixel does not pass the clear tests, the cloud pressure is conservatively set to 100 hPa.

(b) Channel selection for clear-channel identification
We next define a subset of channels to be used in determining whether a cloud

is present at a given level. These channels are primarily sensitive to CO2 absorption
and less sensitive to absorption from other constituents such as water vapour and O3.
The latter constituents have larger uncertainties in their concentrations and may present
higher horizontal variability than CO2. Therefore, there is greater uncertainty in the
weighting functions of channels sensitive to water vapour and O3, rather than to those
sensitive primarily to CO2. The weighting functions for channels in CO2 absorption
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Figure 3. Simulated brightness temperature spectrum at AIRS resolution. Major absorption bands are indicated
above along with frequency bands of HIRS channels (solid horizontal lines). Star: channel used in cloud detection

algorithm; diamond: channel provided in the near-real-time dataset.

bands (primarily used for temperature sounding) can be computed accurately from a
background assuming a fixed CO2 concentration. The calculation of τs and weighting
functions is the only instance where background information is used in our cloud
detection algorithm when there is significant variability.

The selected channels are those within wave-number bands 650–790 cm−1 and
2180–2349 cm−1. Figure 3 shows a simulated night-time brightness temperature spec-
trum at AIRS resolution. The available channels in the near-real-time dataset are shown
along with the subset used in our cloud detection algorithm. For reference, we indicate
the important absorption bands and the frequency bands of HIRS channels.

There are 134 available channels from our set of 281 AIRS channels that fall within
these bands (although about 10 of these in the strongest part of the 15 µm band always
peak above the clouds and do not get used by the algorithm). The short-wavelength side
of the 4.3 µm band could also be used, but it only provides a few channels that are not
affected by non-local thermodynamic equilibrium that occurs in daylight.

(c) Clear-channel identification
In clear-scene conditions, the variations in adjacent-pixel radiances include con-

tributions from instrument noise as well as atmospheric and surface variability.
The algorithm uses a single test to determine whether adjacent-pixel variability exceeds
that expected in clear conditions.

The algorithm starts from the 100 hPa level and steps downwards to lower atmos-
pheric levels until a cloud is found or the surface is reached. There are 100 levels
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TABLE 1. PARAMETERS USED IN CLOUD DETECTION ALGORITHM AND EXPERIMENTAL RESULTS
INVOLVING TRUE (RETRIEVED) CLOUD PRESSURE Ptrue (Pret). ALL PRESSURES IN hPa AND �P

REPRESENTS A PRESSURE OFFSET.

p(Pret > Ptrue + �P) p(Pret < Ptrue − �P)
Max. No. of cases Max.

z BT error BT error > 0.1 K Pret �P = −50 �P = −100 �P = 200 �P = 300

2 0.34 K 4 750 0.02 0.01 0.31 0.11
3 0.66 K 26 775 0.06 0.03 0.13 0.02

BT = brightness temperature.

between the surface and the top of the atmosphere in our algorithm. Given an atmos-
pheric level l, we first define a channel subset (array of channel indexes �l) to use for the
tests. Specifically, we retain only those selected channels for which the layer-to-space
transmittances τ i

l are within prespecified bounds, i.e. ∀i ∈ �l : 0.1 < τi
l < 0.4.

In order to quantify the variability over the selected channels, we form the ensem-
bles E l,1 and El,2:

El,1 =
{

Ri
1 − Ri

2

σ i

}
i∈�l

El,2 =
{

Ri
1 − Ri

3

σ i

}
i∈�l

, (1)

where Ri
k is the observed radiance for channel i in the kth pixel and σ i is the expected

radiance standard deviation for the quantity (Ri
1 − Ri

k) in a homogeneous scene.
The so-called ‘mean test’ determines whether the absolute value of the mean of El,1

or El,2 exceeds a threshold Tm. The mean for a set of clear channels has an expectation
value of zero and a standard deviation equal to 1/

√
nl , where nl is the number of

channels in �l . The values of the threshold Tm are set equal to z/
√

nl, where z is a
factor that can be used to estimate the number of false cloud detections in a given level
by assuming normal distributions for El,k . We selected two values of z for experiments
with both simulated and real data as shown in Table 1. We chose a conservative value
(z = 2) that is more susceptible to false cloud detections than missed clouds, and a
less conservative value (z = 3) that is more prone to produce occurrences of cloud
contamination and fewer false detections.

If the test is successful at a given level l, then the pressure at level l is defined as
the effective cloud pressure. Once a cloud is detected at a level lcld, we retain as clear
only those channels for which τ i

lcld
< 0.01. For the clear channels, the radiances in the 3

FOVs are averaged together to reduce the effects of random instrument noise.
We attempted to develop additional tests based on the expected variance rather than

the mean of the sample. However, we found that with simulated data these tests did
not work well owing to the small sample size of the channel subset for a given level.
We found that the mean test alone provided reasonable results using both simulated and
real AIRS data.

(d) Noise filtering
With real AIRS data, we found it necessary to check for and remove noisy (outlier)

channels for each sounding. To accomplish this, we perform an eigen-decomposition of
brightness temperatures for the channels used in the algorithm with a subset of one full
day of AIRS data. The decomposition could alternatively be done using radiances, but
we have used brightness temperatures as they are more uniform across the wavelength
range used.
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For each profile, we reconstruct the observed brightness temperatures using only the
first 40 eigenvectors. If the radiance cannot be reconstructed to within 2σ of its observed
value, it is discarded from the sample. Infrequently, an extreme outlier may cause none
of the channels to be accurately reconstructed. In this case, the cloud pressure is set to
100 hPa.

3. SIMULATION STUDIES

(a) Cloudy radiance simulator
We developed an AIRS cloudy radiance simulator to test the algorithm. In the

simulator, clouds are assumed to be black. This assumption is not vital to the algorithm.
The approach should work well for non-black as well as black clouds, because the
algorithm depends only on horizontal variability. The choice of black clouds was a
computationally inexpensive way to generate clouds in our simulations.

It would be difficult to simulate realistic subgrid variability with a global general-
circulation model (GCM). Instead, we specify as free parameters for a given cloud level
the cloud pressure and cloud fraction within the pixel. Up to two cloud levels were
simulated per golfball. One assumption is that the two cloud pressures are the same in
all adjacent pixels.

For reference, we also simulate background errors. The simulated change in bright-
ness temperature due to background error was computed using a background-error
covariance matrix similar to that of Joiner and Rokke (2000) that includes vertically
correlated errors.

Random instrument noise is added according to approximate instrument specifica-
tions (0.175 K at a reference temperature of 250 K for wave number ν < 738 cm−1, and
0.1 K at 250 K otherwise). These values are somewhat underestimated in the 15 µm
band as we will see in section 4. However, since the noise values are known in the
simulation, increasing the noise had little effect. We did not include channel-correlated
noise in our simulations.

(b) Clear-channel identification results with Monte Carlo experiments
We conducted Monte Carlo experiments in order to adjust the free parameters of

our algorithm. We present here the results associated with the variation of the mean-test
threshold parameter z.

We selected 39 profiles representative of atmospheric conditions between 18◦N and
63◦N. For each profile, we generated 100 background profiles (Gaussian errors added,
consistent with the background-error covariance). This information is used to calculate
the channel layer-to-space transmittances τ i

l .
Using the true profiles, we compute observed radiances that correspond to the

100 profiles, 9 FOVs, and 281 channels. Two cloud levels were generated for each of the
39 × 100 realizations. Each cloud level is characterized by its pressure level (uniformly
distributed between 980 and 200 hPa) and its cloud fraction (uniform distribution
between 0 and 1 with random overlap). The observed radiances used in the cloud
detection algorithm contain for each pixel contributions from the clear atmosphere, two
black clouds, and instrument noise.

Figures 4(a) and (b) show the correspondence between the generated true cloud
pressure level and the retrieved cloud pressure. We can see that in both simulations there
is a constant offset (on the conservative side) so that clouds are frequently assigned
an altitude located above the true altitude. However, for z = 2 there are many more
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Figure 4. Results of Monte Carlo experiments. Top (bottom) row is for z = 2 (3). (a) and (b) Retrieved cloud
pressure versus truth; plus signs (dots): clouds retrieved above (below) true altitude. (c) and (d) Brightness
temperature (BT) error caused by cloud contamination in channels selected as clear. (e) and (f) Probability of
correct detection (H0 true and declared true, dots), type I error (H0 true but declared false, diamonds), type II
error (H0 false but declared true, stars), correct non-detection (H0 false and declared false, dashes). Solid line is

the probability that the algorithm made the right decision (sum of dots and dashes). See text for details.

occurrences of clouds detected at or around 130 hPa than with z = 3. We can also see
(as summarized in Table 1) that the algorithm never retrieves cloud pressures greater
than 750 (775) hPa for z = 2 (3). Figures 4(a) and (b) also suggest that cases of clouds
detected too low occur mostly for high clouds (300–200 hPa) and for high latitudes
(see Figs. 4(c) and (d)) where the temperature profiles become more isothermal.

Figures 4(c) and (d) show, for each case, the maximum brightness temperature (BT)
error caused by the presence of the clouds in the channels selected as clear. We defined
the BT error as the difference between an exact observation in clear atmosphere and
the observation for which cloud effect only has been added (no observation noise).
We verified that when the cloud was positioned below its retrieved altitude, the BT errors
were small (less than 0.03 K). The converse is that a cloud detected too low as compared
to its real altitude induces larger BT errors. However, the BT errors are generally small
as compared with the instrument noise. The summary in Table 1 confirms that the
maximum BT error is larger for z = 3 than for z = 2, and that there are also more cases
with BT errors > 0.1 K when z = 3.

In order to evaluate the robustness and power of our algorithm, we derived a
confusion matrix for each level of the algorithm (i.e. each time the mean test is applied).
For a given level l we define a hypothesis H0 as follows: ‘There is a cloud at or above the
level l’. The robustness refers to the capacity of the algorithm to declare H0 is true when
it is true. A type I error would be declaring H0 false when H0 is true. The power refers to
the capacity of the algorithm not to err on the side of the false detection. A type II error
would be to declare H0 true when it is false. Figures 4(e) and (f) show the four curves
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corresponding to each of the four possibilities. Note that the probabilities are calculated
by dividing the number of cases by the total number (3900), so that the sum of the four
probabilities equals unity.

With z = 2 we see in Fig. 4(e) that the probability of a type II error is higher than
with z = 3, especially for higher levels (up to 60% of the cases, instead of 40% for
z = 3). On the other hand, the probability of a type I error is very low: less than 2%
(5%), for z = 2 (3). Overall, the algorithm behaves better for lower levels: there are
fewer cases of type II error, and the percentage of type I error remains low.

The probability of the algorithm making the right decision is impaired mainly by
type II errors, rather than type I whose probability remains low. This is the intended
result of a conservative algorithm design. It results in part from our conservative
selection of channel transmittances (0.1 < τi

l < 0.4) to define the sample for a given
level and 0.01 < τi

lcld
to define a cloud-contaminated channel. Therefore, the number of

type II errors reported in Fig. 4 is misleading.
In order to give a better idea of how far the cloud pressure estimate is from the

truth, we show in Table 1 the probability that the cloud pressure was determined within
certain tolerances as compared with the true cloud pressure. For example, with z = 3,
13% (2%) of the time our effective cloud level is more than 200 (300) hPa above the
true cloud-top level. Only 6% (3%) of the time was the retrieved effective cloud level
more than 50 (100) hPa below the true cloud level.

4. RESULTS OBTAINED WITH AIRS DATA

AIRS was launched in May 2002. Shortly thereafter, the AIRS Science Team
released an entire day of data (20 July 2002) known as the focus day. Results shown
here are for data collected between 03 UTC and 15 UTC. We will compute O − B
statistics as an independent check to verify that the algorithm is performing as expected.
It should be noted that O − B contains errors from both observations (e.g. due to
cloud contamination and instrument noise) and background information (e.g. surface
temperature, emissivity, and spatial heterogeneity as well as atmospheric temperature
and humidity). Although it is extremely difficult, if not impossible, to completely
separate the O from the B errors, we have attempted to quantify the background errors
(also including forward model errors) projected to brightness temperature space as well
as the effects of instrument noise for channels with negligible contribution from the
surface (see appendix A).

Observed minus background may not be sufficient to identify all cases of cloud
contamination (e.g. smaller values may still contain cloud contamination as described
above). For algorithms that use O − B for cloud detection, values will be small
(i.e. within expected ranges) by design. However, our algorithm only uses O − B in
cases of no contrast. Therefore, O − B may be used as an independent check of the
algorithm in the majority of scenes where sufficient contrast is present. In this case,
large values of O − B, that are not necessarily excluded by our algorithm, may indicate
residual cloud contamination.

For example, our algorithm may fail if a thin homogeneous cloud occurs over
all nine golfball pixels above a variable cloud at a lower level. This type of problem
was not present in the simulations. The simulations also showed that the algorithm
will occasionally allow some cloud contamination even under ideal conditions. It is
difficult to estimate how often these scenarios will occur. Observed-minus-background
brightness temperature departures may provide a clue.
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Figure 5. Estimated detector noise (diamonds) from AIRS science team and adjacent-pixel variability (+) in
units of equivalent temperature at 250 K. Solid line and triangles in the top panel are estimates of detector noise

and projected forecast error at 250 K (see appendix A), respectively, from observed-minus-forecast statistics.

The background B used here is a six-hour forecast from an early version of the
GMAO’s finite-volume data assimilation system. The GCM includes the dynamical
core of Lin (1997) with the National Center for Atmospheric Research National Center
for Atmospheric Research CCM3 physics (Kiehl et al. 1996). The Physical-Space
Statistical Analysis System (Cohn et al. 1998) is used to compute analysis increments.
An off-line ozone analysis (Stajner et al. 2001) is also provided.

We use the stand-alone AIRS radiative-transfer algorithm (Strow et al. 2003) to
compute brightness temperatures from background fields. For surface emissivity, we
use values over ocean provided by Masuda et al. (1988). Over land, we use a database
compiled from Wilber et al. (1999).

(a) Estimation of clear-scene adjacent-pixel variability
With real data, one must have an accurate estimate of the expected adjacent-pixel ra-

diance differences σi (from Eq. (1)) in clear conditions for the cloud detection algorithm.
The first step for estimating clear-sky adjacent-pixel variability is to find a subset of
low-variability scenes that corresponds to either clear or overcast conditions. We define
a low-variability scene as one in which selected channel brightness temperatures vary
between pixels by less than a given threshold. We used one channel in the long-wave
window (near 917 cm−1) and one in the short-wave window (near 2657 cm−1) for the
variability check. The adjacent-pixel brightness temperature difference threshold was
set at 0.5 K for both channels. This is an arbitrary value and, as we will see, it affects the
estimated variability of surface-affected channels. Setting the threshold higher (lower)
results in a larger (smaller) sample size.
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(a) (b)

Figure 6. (a) Retrieved effective cloud pressure (hPa) from AIRS 20 July 2002. (b) Minimum cloud pressure
from Aqua MODIS.

Using the selected scenes (numbering approximately 7500), we estimate the mean
and r.m.s. adjacent-pixel radiance differences for each channel. The r.m.s. radiance
differences are then converted to a noise-equivalent brightness temperature (NE�T )
at a reference temperature of 250 K. The values for each channel (divided by

√
2 to

give the single FOV standard deviation) are shown in Fig. 5 along with independently
derived NE�T s indicative of detector noise provided by the AIRS Science Team
(S.-Y. Lee 2003, personal communication). We also verified that the adjacent-pixel
radiance probability density functions (PDFs) were extremely Gaussian. As expected,
the PDFs also had a zero mean and did not vary significantly with SZA.

The adjacent-pixel variability estimates agree remarkably with the detector noise
estimates for channels in the CO2 bands (15 µm) that are not surface-affected.
Detector noise estimates are lower than our adjacent-pixel estimates for surface-affected
channels, especially those that are more moisture sensitive. This is apparently due
to spatial inhomogeneity in the surface skin temperature and lower-level humidity.
Smaller differences are obtained in the higher-peaking water-vapour channels due to
less spatial heterogeneity. Nonlinearity of the Planck function causes larger differences
between the two estimates (in terms of NE�T at 250 K) in the short-wave window
channels.

The magnitude of the difference between the two estimates can be reduced by
decreasing the value of the window channel threshold check. However, note that for
the cloud detection algorithm, the surface- and humidity-sensitive channels are not used.
Therefore, while it is interesting to investigate the effects of spatial inhomogeneity using
the two NE�T estimates, it is of no consequence to the results of our study.

We note that there is one channel with anomalously high noise (742.05 cm−1).
This channel was eliminated from the algorithm.

(b) Derived cloud pressure and clear-channel frequency
Figure 6 shows the retrieved effective cloud pressure derived with our algorithm.

Note that this is meant to be a conservative estimate of the true cloud-top pressure.
The highest clouds are seen in tropical regions just north of the equator off the west
coast of Africa, over south Asia, and the Pacific.



1480 J. JOINER et al.

Figure 7. Frequency (%) that a channel is declared clear: diamond (+) for z = 2 (3).

The cloud features are very consistent with minimum cloud-top pressures derived
using a CO2 slicing technique (Menzel and Strabala 1997) from the MODIS instrument
also flying on EOS-Aqua as shown in Fig. 6. The MODIS minimum cloud pressure
and other MODIS cloud properties shown later are composites of 1◦ × 1◦ gridded
level 3 Aqua MODIS data. The infrared MODIS pixel size is 1 × 1 km2. From 60◦S–
60◦N, either day or night orbits corresponding to the AIRS orbits shown here are used.
At latitudes greater than 60◦, the daily mean product is used.

The largest differences between the AIRS and MODIS cloud pressures occur in
MODIS grid boxes near large gradients in cloud pressure where MODIS data indicate
large subgrid variability. Because the MODIS data were averaged over a different spatial
scale than the AIRS data, we were unable to make a good direct comparison between
the two sets of cloud pressures.

One difference between our estimated effective cloud pressure and the minimum
cloud pressure derived from MODIS is that we find fewer high cloud pressures.
Our algorithm usually finds cloud pressures of less than 700 hPa, and this is consistent
with the results of our simulations.

With real data, one reason for this result may be channel-correlated noise that is
not accounted for in our algorithm. This correlation is significant within each read-out
integrated circuit (ROIC) module, but not between modules (M. Weiler 2003, personal
communication). For a given pressure, several of the channels used for the threshold
tests are likely to fall within the same ROIC module. For the higher levels (lower
pressures) more channels are available and therefore it is more likely to have channels
spread across several different ROICs. However, at lower levels, there are fewer channels
available and a higher likelihood for correlated errors to erroneously produce a cloud
detection. However, this explanation does not hold for the simulations.
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Figure 7 shows the frequency in percent that each channel is declared clear for
the two cases z = 2 and 3. As in the simulations, z = 3 produces significantly more
clear channels for channels with weighting-function peaks above the surface in the
troposphere. The only channels found clear 100% of the time are those in the middle
of the 15 µm band because they always peak above the clouds. Channels peaking near
the tropopause are found to be clear about 40% of the time. Upper-tropospheric humidity
channels in the 6.7 µm H2O band are defined as clear about 10–30% of the time.
In contrast, McNally and Watts (2003) find channels in this range clear up to 50% of the
time. However, it should be noted that their approach requires only the centre of the nine
AIRS golfball pixels to be clear, whereas our approach will declare a channel cloudy if
any of the three column pixels is cloudy. Therefore, our approach may have a higher
probability of being faced with cloud contamination based solely on the larger area of
consideration.

The percentage of clear channels in and near window regions is about 4%. These are
channels critical for determining the near-surface temperature and humidity that is
important for NWP. Generally, our algorithm will find all channels with τs > 0.01
cloudy unless a scene is declared clear. We find for a range of conditions, τs > 0.05 for
channels between 9 and 12.75 µm and τs > 0.5 for wavelengths < 4.15 µm. Therefore,
if a cloud is present, it will contaminate all of these channels. In these bands, we find
all of these channels to be clear only about 4% of the time. The McNally and Watts
(2003) algorithm finds the frequency of clear channels within these bands to vary with
wavelength, e.g. channels in the 9.7 µm band (that see the surface) clear up to 15% of
the time, and some channels on the short side of 3.9 µm clear generally less than 5% of
the time. This may be a consequence of using O − B to determine whether a channel is
clear or cloudy.

(c) O − B statistics
In order to obtain good results, we found that it was necessary to apply systematic-

error correction (tuning) to correct for biases in the observations and/or forward model.
We estimated tuning coefficients for each channel along the lines of Joiner and Rokke
(2000). Here, we used the background over ocean downwind of areas heavily covered
by radiosondes in pixels identified as clear to estimate the coefficients. The predictors
for the bias correction scheme include a subset of the following for each channel:
(i) constant, (ii) sec(SZA), (iii) SZA, (iv) and (v) scaling factor for the optical depth
of fixed gases and water vapour, respectively, used in the radiative-transfer code.

Figure 8 shows the means and standard deviations of O − B for the two experi-
ments z = 2 and 3. The means for the temperature sounding channels in CO2 absorp-
tion bands are very close to zero. The standard deviations for the temperature sounding
channels and window channels are very consistent at ∼0.7 K. Overall results were very
similar for the two experiments. However, as will be shown later, there are more possible
cloud-contaminated channels for the z = 3 case.

The only channels with significant biases are those in the 9.7 µm ozone band, the
6.7 µm water-vapour band, and temperature sounding channels that have weighting-
function tails in the mesosphere. These biases are likely to be due to errors in the
background field. The GMAO model is known to have a moist bias in upper levels,
particularly in the Tropics, which is consistent with the positive O − B bias. The posi-
tive bias in O − B is inconsistent with cloud contamination, because clouds in general
reduce O and thus produce negative biases. The model also has a known temperature
bias at high southern latitudes in the mesosphere. This produces the negative biases in
channels near the 15 µm and 4.3 µm band centres.
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Figure 8. Observed-minus-background brightness temperature (TB diff.) statistics. Diamond (+): mean for z = 2
(3); square (star): standard deviation for z = 2 (3).

There are slightly higher standard deviations for the z = 3 case for channels near
705 cm−1 and in the water-vapour band. For some of these channels, the bias is lower,
but closer to zero for z = 3. This could be indicative of some cloud contamination in
these channels.

Using a GMAO analysis rather than the forecast as the background gave slight
improvements in O − B. We also computed O − B for 00–03 UTC using a National
Centers for Environmental Prediction analysis as the background. The mean (O − B)s
using the two analyses as backgrounds were very similar to those shown in Fig. 8 com-
puted with forecast background. The standard deviations were also very similar though
slightly reduced when using the analyses in some of the high-peaking temperature and
water-vapour channels, suggesting that the analyses are closer to the AIRS observations
than the GMAO forecast. Visual inspection of maps for some channels showed isolated
areas where the (O − B)s computed with the analyses were smaller than those using the
GMAO forecast background. This demonstrates that there is information content in the
AIRS data that is consistent with that from other data used in the analyses.

Figure 9 shows O − B for a relatively high-peaking CO2 channel at 14.5 µm for
the z = 2 case. Very high tropical convective clouds contaminate this channel and most
are eliminated by the algorithm. Of the 81 000 soundings, 16 (23), or roughly 0.02
(0.03)%, presented O − B < −3 K for z = 2 (3) when the channel was identified as
clear, indicating possible cloud contamination. Most of these occurred at high southern
latitudes where the larger values may be due to background error. In comparison, there
were 20 (25) profiles with O − B > 3 K, mostly at middle to high southern latitudes.
There were 268 (318) sounding with O − B > 2 K, most at middle to high southern
latitudes in an area where there appears to be background error. In contrast there were
54 (86), or 0.07 (0.1)%, with O − B < −2 K for the two experiments, but these were
more randomly distributed.
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(a) (b)

Figure 9. Observed-minus-background brightness temperatures (K) for a channel at 689.6 cm−1. (a) Scenes
with no contrast (clear or overcast) appear as missing data along with areas where the algorithm determines the
channel to be cloud-contaminated. (b) All pixels. Values falling outside the given ranges are plotted using the

minimum/maximum depth of shading.

(b)(a)

Figure 10. Similar to Fig. 9 but for a lower-peaking channel (700.6 cm−1).

An indeterminate area for our algorithm (either clear or overcast as indicated by an
insufficient amount of contrast in the adjacent pixels) occurs near 70◦S, 140◦W. This and
other similar areas show as missing data in Figs. 9–11. In a case such as this, if the
scene does not pass the strict clear checks described above, our algorithm defaults to a
conservative cloud pressure of 100 hPa.

Figure 10 shows O − B for a channel centred at 700.6 cm−1, peaking lower in
the atmosphere. There is significantly more cloud contamination in this channel, but
also a significant number of soundings determined to be clear. For this channel, there
were 49 (154) soundings with O − B < −3 K for z = 2 (3) when it was determined
to be clear, most at high latitudes. There were 0 (0) soundings with O − B > 3 K.
There were 184 (422) soundings with O − B < −2 K, most at high southern latitudes
and 61 (66) soundings with O − B > 2 K, most at low latitudes. This suggests that there
are very few possible cases of cloud contamination for the z = 2 case, but potentially
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(a) (b)

Figure 11. Similar to Fig. 9 but for an 11 µm window channel (917.1 cm−1).

Figure 12. (a) Mean effective emissivity derived from Aqua MODIS. (b) minimum cloud fraction from MODIS.

more when z = 3. Visually, one can see that this channel is declared clear in regions that
appear to be cloudy. It is not clear whether the channel is contaminated due to possible
homogeneous high thin cloud over an inhomogeneous lower cloud or whether the model
has a warm bias over these cloudy regions.

Figure 11 shows O − B for an 11 µm window channel. For this channel to be
identified as clear, it must pass all clear tests in addition to the homogeneity test.
By definition of the background checks, this channel must be within 1 K of the
background over ocean and within 3 K over land. Many of the areas over land identified
as clear by MODIS pixels are not found to be clear with AIRS. These pixels fail to pass
the background check due to significant errors in the background skin temperatures.
Note that MODIS finds very few 1◦ × 1◦ grid points to be completely cloud free.
Most of the areas identified as clear in our algorithm correspond to areas where the
MODIS minimum cloud fraction, shown in Fig. 12, is very low or zero.
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One area where our results differ from those of McNally and Watts (2003) is along
the middle orbit that overpasses Africa. They find the 13.5 µm channel to be frequently
clear over central and northern Africa, whereas we find this channel to be mostly cloudy.
This channel should be clear only if there are low or no clouds present. Figure 6 shows
that there are few low clouds in the MODIS minimum cloud-pressure product in this
area. Our algorithm similarly finds high clouds along the orbit. Low values of effective
emissivity (product of the emissivity and cloud fraction) are derived from MODIS, as
shown in Fig. 12, in the region indicating broken or thin cloud that may be difficult to
detect with an O − B approach.

There are some areas identified as clear by our algorithm and also by that of
McNally and Watts (2003) that are not identified as clear in MODIS products.
One example is the area near 50◦S, 100◦W. The MODIS minimum cloud fraction in
the area was not always low, the mean emissivity was relatively high, and the minimum
cloud pressures were between 850 and 900 hPa. In such night-time cases, it is difficult
to determine whether cloud was indeed present.

5. SUMMARY AND FUTURE WORK

We have developed a new clear-channel identification scheme and applied it to
both real and simulated AIRS data. The algorithm is relatively easy to implement, does
not require substantial computational resources, and is mostly background-independent.
It searches for spatial variability induced by the presence of clouds. It can be applied
alone or in conjunction with (O − B)-based cloud detection schemes. The threshold
parameters can be adjusted to more or less conservative values based on the particular
application.

Because the approach uses information from adjacent pixels, the full pixel comple-
ment within an AIRS/AMSU golfball is desired. For our implementation, at least three
of the nine pixels are required. It is desirable to retain as many channels as possible in
the CO2 bands from the original dataset. The results obtained here may be improved
with a larger subset of channels. Our simulations showed small improvements when the
full AIRS channel complement in the selected CO2 bands is used.

The O − B brightness temperature statistics have been used as an independent
check and suggest that the algorithm is performing well. In addition, the derived
conservative cloud pressure estimate compared well with retrieved minimum cloud
pressures from Aqua MODIS.

The ultimate test of any cloud detection method for NWP and climate application is
to evaluate the impact within a data assimilation system. We have implemented the new
clear-channel identification within a one-dimensional variational cloud-clearing analysis
and assimilation scheme. We plan to conduct impact assessments in the near future.

The method developed here may have applications for other types of instruments.
For example, it is important to have an accurate cloud mask for ultraviolet instruments
that are used to derive information about trace gases and aerosol. We plan to explore
adjacent-pixel homogeneity tests for cloud masking using the ultraviolet Ozone Moni-
toring Instrument that will fly on EOS Aura.
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APPENDIX

Estimating forecast error in AIRS channels
Using O − B statistics from two different experiments, we can derive the projected

forecast error onto AIRS channels in the 15 µm band. Within this band, clear-scene
adjacent-pixel variability is due mainly to detector noise as illustrated in Figs. 5.

In addition to computing O − B for clear channels using O as an average of the
radiances in the three column pixels, we also computed O − B with O as the radiance
from the clearest pixel. The O − B variance for a particular channel for the latter
experiment with the single pixel observation (σ 2

1 ) may be expressed by

σ 2
f + σ 2

o = σ 2
1 , (A.1)

and for the former experiment where three pixels are averaged (σ 2
3 ) by

σ 2
f + σ 2

o /3 = σ 2
3 , (A.2)

where σ 2
f is the variance of the projected forecast error and σ 2

o is the detector noise.
These equations assume that forecast and observation errors are uncorrelated and that
the forecast errors are constant. Since forecast errors are known to vary spatially, the
estimates obtained here can be considered as a global average. The solutions to these
equations are

σo =
√

1.5σ 2
1 − 1.5σ 2

3 (A.3)

and

σf =
√

1.5σ 2
3 − 0.5σ 2

1 . (A.4)

We solve all equations using radiances rather than brightness temperatures, because
detector noise should be constant in radiance units. The values of σo and σf are then
converted to an equivalent temperature value at 250 K to be consistent with other error
estimates.

The top panel of Fig. 5 (15 µm band) shows the estimates of σo (solid line) and
σf (triangles) from this approach. The values of σo are extremely consistent with the
estimates of detector noise from the AIRS science team and adjacent-pixel variability.
This gives us confidence in our estimate of σf.

The channels peaking in the upper troposphere and lower stratosphere (around 660
and 680 cm−1) have detector noise estimates slightly higher than projected forecast
errors. Channels peaking in the upper stratosphere (near the 15 µm band centre) and
lower troposphere (on the short side of about 14.3 µm), in contrast, have significantly
lower estimates of detector noise than the forecast errors.

Note that the values of σf shown here cannot be compared directly with the
estimates of McNally and Watts (2003) who used an estimate of the European Centre for
Medium-Range Weather Forecasts background error projected to AIRS brightness tem-
peratures. The latter estimates are valid at temperatures corresponding to representative
observations rather than 250 K. However, for channels with observed brightness temper-
atures near 250 K (peaking in the middle troposphere near 710 cm−1), the two may be
compared. Our estimated σf values are comparable or slightly higher for these channels.
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